4.7 Article

Exchange Repulsion in Quantum Mechanical/Effective Fragment Potential Excitation Energies: Beyond Polarizable Embedding

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 16, Issue 10, Pages 6408-6417

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.9b01156

Keywords

-

Funding

  1. National Science Foundation [CHE-1800505, CHE-1450088]

Ask authors/readers for more resources

Hybrid quantum mechanical and molecular mechanical (QM/MM) approaches facilitate computational modeling of large biological and materials systems. Typically, in QM/MM, a small region of the system is modeled with an accurate quantum mechanical method and its surroundings with a more efficient alternative, such as a classical force field or the effective fragment potential (EFP). The reliability of QM/MM calculations depends largely on the treatment of interactions between the two subregions, also known as embedding. The polarizable embedding, which allows mutual polarization between solvent and solute, is considered to be essential for describing electronic excitations in polar solvents. In this work, we employ the QM/EFP model and extend the polarizable embedding by incorporating two short-range terms-a charge penetration correction to the electrostatic term and the exchange-repulsion term-both of which are modeled with one-electron contributions to the quantum Hamiltonian. We evaluate the accuracy of these terms by computing excitation energies across 37 molecular clusters consisting of biologically relevant chromophores surrounded by polar solvent molecules. QM/EFP excitation energies are compared to the fully quantum mechanical calculations with the configuration interaction singles (CIS) method. We find that the charge penetration correction diminishes the accuracy of the QM/EFP calculations. On the other hand, while the effect of exchange-repulsion is negligible for most pi pi* transitions, the exchange-repulsion significantly improves description of n pi* transitions with blue solvatochromic shifts. As a result, addition of the exchange-repulsion term improves the overall accuracy of QM/EFP. Performances of QM/EFP models remain similar when excitation energies are modeled with cc-pVDZ and aug-cc-pVDZ basis sets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available