4.7 Article

Surface defect passivation of Ta3N5 photoanode via pyridine grafting for enhanced photoelectrochemical performance

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 153, Issue 2, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/5.0012873

Keywords

-

Funding

  1. National Natural Science Foundation of China [51911530212, 51872240, 51672225, 51872179]
  2. Natural Science Foundation of Shaanxi Province [2020 JM-273]
  3. Fundamental Research Funds for the Central Universities [3102019JC005, 3102019ghxm004]
  4. Research Fund of the State Key Laboratory of Solidification Processing (NPU), China [2019-QZ-03]
  5. 1000 Youth Talent Program of China

Ask authors/readers for more resources

Tantalum nitride (Ta3N5) is a promising photoanode material for photoelectrochemical (PEC) water splitting, while the Ta3N5/Ta photoanode synthesized via general thermal oxidation and nitridation on a Ta foil method usually has serious carrier recombination at the surface, which usually reduces the PEC activities. Herein, we demonstrate an efficient strategy of decorating pyridine, a small organic molecule at the surface of the Ta3N5/Ta photoanode, to alleviate the surface recombination. Such decoration yields a stable photocurrent density of 4.4 mA cm(-2) at 1.23 V-RHE under AM 1.5G (air mass 1.5 global, 100 mW cm(-2)) simulated sunlight, which is about 1.4 times higher than that of Ta3N5/Ta without modification, and the photocurrent density still remained similar to 100% of its original value after a 5 h stability test. Further characterization of the incident photon-to-current conversion efficiency and absorbed photon-to-current efficiency of the pyridine/Ta3N5/Ta photoanode showed a significant increase to 62% and 72% at 500 nm, respectively. The enhanced pyridine/Ta3N5/Ta PEC performance can be attributed to minimizing the density of nitrogen vacancies due to the passivation of pyridine grafting, which results in the decreased recombination centers and improved charge separation efficiency at the surface. We thus believe that our study of surface passivation by using small organic molecules provides an alternative to address the surface recombination of Ta3N5 based photoelectrodes. Published under license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available