4.4 Review

Mitochondrial reactive oxygen species cause major oxidative mitochondrial DNA damages and repair pathways

Journal

JOURNAL OF BIOSCIENCES
Volume 45, Issue 1, Pages -

Publisher

INDIAN ACAD SCIENCES
DOI: 10.1007/s12038-020-00055-0

Keywords

DNA damage; mitochondria; oxidative modifications; reactive oxygen species; redox balance; repair

Categories

Funding

  1. National Natural Science Foundation of China [81773772]
  2. Fundamental Research Funds for the Central Universities [xtr0118022]

Ask authors/readers for more resources

Mitochondria-derived reactive oxygen species (mROS) are produced at a variety of sites and affect the function of bio-molecules. The anti-oxidant system from both mitochondria and cytosol tightly coordinate to maintain the redox balance of cells and reduce damage from mROS. Mitochondrial DNA (mtDNA) are highly susceptible to mROS, and are easily oxidized to accumulate DNA modifications. Frequent oxidative damages in mtDNA have been associated with neurological degeneration, inflammasomes, tumorigenesis, and malignant progression. Among mitochondrial DNA repair pathways, the base excision repair pathway has been extensively characterized to remove some of oxidative damages in mtDNA as efficiently as the nuclear base excision repair. The implications of other pathways remain unclear. This review focuses on: (i) Sources of mROS and the antioxidant system to balance redox status; (ii) major mtDNA lesions or damages from mROS-mediated oxidation and the reported repair pathways or repairing factors; (iii) cellular response of oxidized mtDNA and methods to identify oxidatively generated DNA modifications in pathological conditions. DNA damages caused by mROS have been increasingly implicated in diseases and aging, and thus we critically discuss methods of the oxidative modifications evaluation and the complexity of non-canonical DNA repair pathways in mitochondria.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available