4.4 Article

Comparative assessment of the efficiency of various decellularization agents for bone tissue engineering

Publisher

WILEY
DOI: 10.1002/jbm.b.34677

Keywords

decellularizated bone; scaffold; sodium dodecyl sulfate; sodium lauryl ether sulfate; trypsin

Funding

  1. Shiraz University of Medical Sciences [97-19288]

Ask authors/readers for more resources

The study compared the quality of decellularized bone produced through different methods, finding that SLES and SDS 0.5% were more effective in preserving ultrastructure and ECM constituents, as well as significantly increasing cell viability.
Bone regeneration can be possible through grafts or engineered bone replacement when bone defects are larger than the critical size. Decellularized bone extracellular matrix (ECM) is an alternative that is able to accelerate tissue regeneration, while decellularization protocols influence engineered bone quality. The objective of this study was to compare the quality of decellularized bone produced through different methods. Four decellularization methods were employed using (a) sodium lauryl ether sulfate (SLES), (b) sodium dodecyl sulfate (SDS) 0.5%, (c) SDS 1% and (d) trypsin/EDTA. All samples were then washed in triton X-100. DNA quantification, hematoxylin and eosin, and Hoechst staining showed that although DNA was depleted in all scaffolds, treatment with SLES led to a significantly lower DNA content. Glycosaminoglycan quantification, Raman confocal microscopy, alcian blue and PAS staining exhibited higher carbohydrate retention in the scaffolds treated with SLES and SDS 0.5%. Raman spectra, scanning electron microscopy and trichrom Masson staining showed more collagen content in SLES and SDS-treated scaffolds compared to trypsin/EDTA-treated scaffolds. Therefore, although trypsin/EDTA could efficiently decellularize the scaffolds, it washed out the ECM contents. Also, both MTT and attachment tests showed a significantly higher cell viability in SLES-treated scaffolds. Raman spectra revealed that while the first washing procedure did not remove SLES traces in the scaffolds, excessive washing reduced ECM contents. In conclusion, SLES and, to a lesser degree, SDS 0.5% protocols could efficiently preserve ultrastructure and ECM constituents of decellularized bone tissue and can thus be suggested as nontoxic and safe protocols for bone regeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available