4.6 Article

Adipose mesenchymal stem cell-derived extracellular vesicles containing microRNA-26a-5p target TLR4 and protect against diabetic nephropathy

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 295, Issue 37, Pages 12868-12884

Publisher

ELSEVIER
DOI: 10.1074/jbc.RA120.012522

Keywords

MicroRNA-328-3p; extracellular vesicles; adipose-derived mesenchymal stem cells; Toll-like receptor 4 (TLR4); NF-kappa B; vascular endothelial growth factor; diabetic nephropathy; metabolic disorder; inflammation; diabetes; cell biology; cell cycle; cell differentiation; cell culture

Funding

  1. Key Scientific Research Project of Colleges and Universities in Henan Province [16A320031]

Ask authors/readers for more resources

Diabetic nephropathy (DN) is a complication of diabetes that is increasing in prevalence in China. Extracellular vesicles (EVs) carrying microRNAs (miRs) may represent a useful tool in the development of therapies for DN. Here, we report that EVs released by adipose-derived mesenchymal stem cells (ADSCs) during DN contain a microRNA, miR-26a-5p, that suppresses DN. Using bioinformatic analyses, we identified differentially expressed miRs in EVs from ADSCs and in DN and predicted downstream regulatory target genes. We isolated mesenchymal stem cells (MSCs) from adipose tissues and collected EVs from the ADSCs. We exposed mouse glomerular podocytes and MP5 cells to high glucose (HG), ADSC-derived EVs, miR-26a-5p inhibitor/antagomir, Toll-like receptor 4 (TLR4) plasmids, or the NF-kappa B pathway activator (phorbol-12-myristate-13-acetate, or PMA). We used the cell counting kit-8 (CCK-8) assay and flow cytometry to investigate the impact of miR-26a-5p on cell viability and apoptosis and validated the results of these assays within vivoexperiments in nude mice. We found that in DN, miR-26a-5p is expressed at very low levels, whereas TLR4 is highly expressed. Of note, EVs from ADSCs ameliorated the pathological symptoms of DN in diabetic mice and transferred miR-26a-5p to HG-induced MP5 cells, improving viability while suppressing the apoptosis of MP5 cells. We also found that miR-26a-5p protects HG-induced MP5 cells from injury by targeting TLR4, inactivating the NF-kappa B pathway, and downregulating vascular endothelial growth factor A (VEGFA). Moreover, ADSC-derived EVs transferred miR-26a-5p to mouse glomerular podocytes, which ameliorated DN pathology. These findings suggest that miR-26a-5p from ADSC-derived EVs protects against DN.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available