4.7 Article

PI3K-mTOR Pathway Inhibition Exhibits Efficacy Against High-grade Glioma in Clinically Relevant Mouse Models

Journal

CLINICAL CANCER RESEARCH
Volume 23, Issue 5, Pages 1286-1298

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-16-1276

Keywords

-

Categories

Funding

  1. foundation StopHersentumoren.nl

Ask authors/readers for more resources

Purpose: The PI3K-AKT-mTOR signaling pathway is frequently activated in glioblastoma and offers several druggable targets. However, clinical efficacy of PI3K/mTOR inhibitors in glioblastoma has not yet been demonstrated. Insufficient drug delivery may limit the efficacy of PI3K/mTOR inhibitors against glioblastoma. The presence of the efflux transporters ABCB1/Abcb1 (P-glycoprotein, MDR1) and ABCG2/Abcg2 (BCRP) at the blood-brain barrier (BBB) restricts the brain penetration of many drugs. Experimental Design: We used in vitro drug transport assays and performed pharmacokinetic/pharmacodynamic studies in wild-type and ABC-transporter knockout mice. The efficacy of PI3K-mTOR inhibition was established using orthotopic allograft and genetically engineered spontaneous glioblastoma mouse models. Results: The mTOR inhibitors rapamycin and AZD8055 are substrates of ABCB1, whereas the dual PI3K/mTOR inhibitor NVP-BEZ235 and the PI3K inhibitor ZSTK474 are not. Moreover, ABCG2 transports NVP-BEZ235 and AZD8055, but not ZSTK474 or rapamycin. Concordantly, Abcb1a/b(-/-); Abcg2(-/-) mice revealed increased brain penetration of rapamycin (13-fold), AZD8055 (7.7-fold), and NVP-BEZ235 (4.5-fold), but not ZSTK474 relative toWTmice. Importantly, ABCtransporters limited rapamycin brain penetration to subtherapeutic levels, while the reduction in NVP-BEZ235 brain penetration did not prevent target inhibition. NVP-BEZ235 and ZSTK474 demonstrated antitumor efficacy with improved survival against U87 orthotopic gliomas, although the effect of ZSTK474 was more pronounced. Finally, ZSTK474 prolonged overall survival in Cre-LoxP conditional transgenic Pten; p16(Ink4a)/p19(Arf); K-Ras(v12); LucRmice, mainly by delaying tumor onset. Conclusions: PI3K/mTOR inhibitors with weak affinities for ABC transporters can achieve target inhibition in brain (tumors), but have modest single-agent efficacy and combinations with (BBB penetrable) inhibitors of other activated pathways may be required. (C)2016 AACR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available