4.6 Article

Encapsulation and delivery of protein from within poly(sulfobetaine) hydrogel beads

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 137, Issue 40, Pages -

Publisher

WILEY
DOI: 10.1002/app.49550

Keywords

biocompatibility; biomaterials; biomimetic; hydrophilic polymers; proteins

Ask authors/readers for more resources

Advancement of therapeutic protein therapies can be hindered by their poor stability and short in vivo half-life. There is emerging evidence that biocompatible zwitterionic materials can prevent nonspecific interactions within proteins systems that contribute to protein instability. Here, zwitterionic hydrogel beads are synthesized from poly(sulfobetaine methyl methacrylate), pSB, using an inverse emulsion, free radical polymerization reaction technique. The transport properties within the zwitterionic hydrogels were characterized using(1)H NMR diffusometry. Equilibrium water content as high as 0.90 was measured for the synthesized hydrogels. Our study revealed that the pSB hydrogels are nontoxic, ion responsive, and their swelling is temperature dependent. The zwitterionic hydrogel beads were capable of undergoing lyophilization without aggregation. Hydrogel beads were loaded with a model protein, bovine serum albumin (BSA), using a postfabrication loading technique. The protein loading was studied using confocal laser microscopy, indicating homogenous protein dispersion of up to 40 mu g BSA/mg hydrogel within the beads. Furthermore, the release rate of the protein from the synthesized hydrogel was studied at different crosslinker to monomer ratios. The protein encapsulated within the zwitterionic hydrogel had slower rates of thermal aggregation compared to nonencapsulated protein in solution. Furthermore, the protein-loaded inside the zwitterionic hydrogel better maintained its bioactivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available