4.5 Article

Experimental Vibration Investigation on High-Speed Railway Ballastless Track-Subgrade Structure

Publisher

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0219455420500819

Keywords

High-speed railway; track-subgrade system; similitude design; dynamic load; soil-structure interaction

Funding

  1. National Basic Research Program of China (973 Program) [2014CB049100]
  2. Fundamental Research Funds for the Central Universities, CHD [300102280107]
  3. Natural Science Foundation of Shaanxi Province [2019JQ-021, 2020JQ-382]

Ask authors/readers for more resources

With the development of high-speed railways, the double-line mode of ballastless tracks is being adopted increasingly worldwide. In some sections where subgrades need to be laid, this type of line mode is also applied above the subgrade, thus forming double-line track-subgrade structure. In this structure, the subgrade on one side of the double-line is subjected to the eccentric pressure of the load when the unidirectional train is running (the most common operating condition in actual operation). When the subgrade contains embankment layer, the complexity of the problem is increased. Therefore, a 1:4 scale test model of the double-line ballastless track-subgrade system was constructed in this paper in order to study the dynamic responses of the double-line track-subgrade structure with embankment layer under the unidirectional high-speed train loads. By considering the similarity of shear wave velocities, a new uniform dynamic similarity method was adopted to design the track, subgrade and foundation models. The effects of a series of sine waves with 1-30 Hz excitation frequency and three kinds of loading modes on the speed, soil stress and acceleration response of the track and subgrade were systematically investigated. The relationship between the effective composite values of velocity beneath the track and the depth was finally obtained. The results show that the dynamic stress attenuation of the subgrade bottom layer under larger axle loads are relatively faster. It is found that the dynamic stress attenuation of the subgrade bottom layer is relatively fast under the high-frequency uniform excitation of large axial heavy load.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available