4.7 Article

A deep learning framework for hydrogen-fueled turbulent combustion simulation

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 45, Issue 35, Pages 17992-18000

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2020.04.286

Keywords

Deep learning; Convolutional neural network; Computational fluid dynamics; Turbulent combustion

Funding

  1. UK Engineering and Physical Sciences Research Council [EP/R029598/1, EP/S012559/1]
  2. China Scholarship Council (CSC) [201806290091]
  3. EPSRC [EP/R029598/1, EP/S012559/1] Funding Source: UKRI

Ask authors/readers for more resources

The high cost of high-resolution computational fluid/flame dynamics (CFD) has hindered its application in combustion related design, research and optimization. In this study, we propose a new framework for turbulent combustion simulation based on the deep learning approach. An optimized deep convolutional neural network (CNN) inspired by a U-Net architecture and inception module is designed for constructing the framework of the deep learning solver, named CFDNN. CFDNN is then trained on the simulation results of hydrogen combustion in a cavity with different inlet velocities. After training, CFDNN can not only accurately predict the flow and combustion fields within the range of the training set, but also shows an extrapolation ability for prediction outside the training set. The results from the CFDNN solver show excellent consistency with conventional CFD results in terms of both predicted spatial distributions and temporal dynamics. Meanwhile, two orders of magnitude of acceleration is achieved by using the CFDNN solver compared to a conventional CFD solver. The successful development of such a deep learning-based solver opens up new possibilities of low-cost, high-accuracy simulations, fast prototyping, design optimization and real-time control of combustion systems such as gas turbines and scramjets. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available