4.7 Article

Numerical investigation of water dynamics in a novel wettability gradient anode flow channel for proton exchange membrane fuel cells

Journal

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
Volume 44, Issue 13, Pages 10282-10294

Publisher

WILEY
DOI: 10.1002/er.5648

Keywords

anode flow channel; PEMFCs; water management; wettability gradient

Ask authors/readers for more resources

The effective removal and transport of water in flow channels play an important role in the water management of proton exchange membrane fuel cells (PEMFCs). In this paper, a novel design of anode serpentine flow channel with the wettability gradient wall is discussed and numerically investigated by utilizing the volume-of-fluid (VOF) method. The effects of the contact angle and the wettability gradient of channel walls, as well as hydrogen flow velocity and water droplet size, on the droplet dynamic behavior are studied. The results indicate that compared with the conventional flow channel, the water droplet can be more effectively removed from the turning part in the wettability gradient flow channel. And the water removal ability in the turning part is improved with the increase of the wettability gradient. Moreover, the wettability gradient flow channel can also improve the water removal performance for the cases with different hydrogen flow velocities and water droplet sizes. This study provides ideas for guiding the design of flow channel to effectively enhance anode water management.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available