4.7 Article Proceedings Paper

Modeling, design, and optimization of a cost-effective and reliable hybrid renewable energy system integrated with desalination using the division algorithm

Journal

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
Volume 45, Issue 1, Pages 429-452

Publisher

WILEY
DOI: 10.1002/er.5628

Keywords

division algorithm; hybrid system; life cycle cost; optimization sizing; reliability; renewable energy

Ask authors/readers for more resources

In the Middle East, utilizing seawater desalination technology integrated with renewable energy sources can help solve freshwater shortages more effectively and cost-efficiently. Research shows that the WT/PV/BBS configuration is the optimal choice, providing high reliability and longer battery life.
People in the Middle East are facing the problem of freshwater shortages. This problem is more intense for a remote region, which has no access to the power grid. The use of seawater desalination technology integrated with the generated energy unit by renewable energy sources could help overcome this problem. In this study, we refer a seawater reverse osmosis desalination (SWROD) plant with a capacity of 1.5 m(3)/h used on Larak Island, Iran. Moreover, for producing fresh water and meet the load demand of the SWROD plant, three different stand-alone hybrid renewable energy systems (SAHRES), namely wind turbine (WT)/photovoltaic (PV)/battery bank storage (BBS), PV/BBS, and WT/BBS are modeled and investigated. The optimization problem was coded in MATLAB software. Furthermore, the optimized results were obtained by the division algorithm (DA). The DA has been developed to solve the sizing problem of three SAHRES configurations by considering the object function's constraints. These results show that this improved algorithm has been simpler, more precise, faster, and more flexible than a genetic algorithm (GA) in solving problems. Moreover, the minimum total life cycle cost (TLCC = 243 763$), with minimum loss of power supply probability (LPSP = 0%) and maximum reliability, was related to the WT/PV/BBS configuration. WT/PV/BBS is also the best configuration to use less battery as a backup unit (69 units). The batteries in this configuration have a longer life cycle (maximum average of annual battery charge level) than two other configurations (93.86%). Moreover, the optimized results have shown that utilizing the configuration of WT/PV/BBS could lead to attaining a cost-effective and green (without environmental pollution) SAHRES, with high reliability for remote areas, with appropriate potential of wind and solar irradiance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available