4.6 Article

Two stage risk based decision making for operation of smart grid by optimal dynamic multi-microgrid

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijepes.2019.105791

Keywords

Active distribution network; Distributed energy resource; Emergency operation; Energy storage system; Multi-microgrid; Renewable energy resource

Ask authors/readers for more resources

Resect severe economic losses caused by distribution system equipment outage have highlighted the importance of improving the system resiliency and reliability. In active distribution networks (ADNs), the distributed energy resources (DERs) managed by dynamic isolated microgrids in contingency mode provide an alternative approach to enhance the system resiliency and continue supplying critical loads after equipment outage. How to incorporate this ADNs capability into a short-term DERs scheduling is a challenging issue. In response to this challenge, in this paper, a two stage risk based decision making framework for operation of ADNs is proposed to coordinate 24-h DERs' scheduling and outage management scheme, in a way to be immune against contingency by creating optimal dynamic multi-micrigrid, micro-turbine and energy storage island operating and load shed plan. The first stage is the normal operation condition that operation cost should be minimized considering of the uncertainties of renewable resources, the electricity price and customers loads. The second stage is the operation in contingency condition. In the second stage, the main objective is to keep the shed load at minimum level. Numerical results and sensitivity analysis from modified 33-bus IEEE network are further discussed to demonstrate the efficiency of the solution approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available