4.7 Article

Sensitivity analysis of parameters and contrasting performance of ground filtering algorithms with UAV photogrammetry-based and LiDAR point clouds

Journal

INTERNATIONAL JOURNAL OF DIGITAL EARTH
Volume 13, Issue 12, Pages 1672-1694

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/17538947.2020.1791267

Keywords

DTM; filtering; LiDAR; point cloud; spoil heap; UAV

Funding

  1. Czech Science Foundation [17-17156Y]
  2. Grant Agency of the Czech Technical University in Prague

Ask authors/readers for more resources

Most ground filtering algorithms are primarily designed for airborne LiDAR point cloud processing and their successful use in identifying ground points from photogrammetric point clouds remains questionable. We compared six ground filtering algorithms implemented in Metashape, ArcGIS, CloudCompare, LAStools, and PDAL. We used UAV photogrammetry-based (acquired under leaf-off conditions) and airborne LiDAR (leaf-on) point clouds of the same area to: (i) compare accuracy of generated DTMs; (ii) evaluate the effect of vegetation density and terrain slope on filtering accuracy; and (iii) assess which algorithm parameters have the greatest effect on the filtering accuracy. Our results show that the performance of filtering algorithms was affected by the point cloud type, terrain slope and vegetation cover. The results were generally better for LiDAR (RMSE 0.13-0.19 m) than for photogrammetric (RMSE 0.19-0.23 m) point clouds. The behavior in varying vegetation and terrain conditions was consistent for LiDAR point clouds. However, when applied on photogrammetric point clouds, the algorithms' behavior was inconsistent, especially in areas of steep slope (except for the Progressive Triangulated Irregular Network in LAStools). Parameters related to the selection of the initial minimum elevation ground points were the most influential in all algorithms and point clouds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available