4.7 Review

Naturally occurring biological macromolecules-based hydrogels: Potential biomaterials for peripheral nerve regeneration

Journal

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
Volume 154, Issue -, Pages 795-817

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2020.03.155

Keywords

Peripheral nerve injury; Biomaterials; Natural hydrogels; Scaffold; Regenerative medicine

Funding

  1. Kermanshah University of Medical Sciences, Kermanshah, Iran

Ask authors/readers for more resources

Despite the recent advances in the treatment strategies of peripheral nerve system defects, peripheral nerve injury (PNI) is still one of the most important health issues with increasing incidence worldwide. The most commonly used treatment approaches are allografts, xenografts, and autologous, which have some drawbacks, including complications, limited source of the donor tissue, tubular collapse, and scar tissue formation. In this context, regenerative medicine has been introduced as a powerful approach to improve the healing process and obtain acceptable functional recovery in the injury site using living cells, scaffold, and bioactive (macro-) molecules. Amongst them, scaffold as a three-dimensional (3D) support biomaterial, structurally bridged the gap or site of injury in order to provide physical and chemical cues to promote correct reinnervation and functional regeneration. Amongst different scaffolding biomaterials, naturally occurring biological macromolecules (more especially proteins and polysaccharides)-based hydrogels exhibited promising results due to their fascinating physicochemical, as well as physiologically relevant properties. This review highlights the recent progress in the development of natural hydrogels-based neural scaffolds. Furthermore, PNI healing process, current status, and challenges are also shortly discussed. (C) 2020 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available