4.7 Article

Stochastic Design and Analysis of User-Centric Wireless Cloud Caching Networks

Journal

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
Volume 19, Issue 7, Pages 4978-4993

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TWC.2020.2988559

Keywords

Cloud computing; Optimization; Wireless communication; Probabilistic logic; Interference; Numerical models; Stochastic processes; Stochastic geometry; Poisson cluster process; probabilistic content placement; caching networks; wireless cloud networks

Ask authors/readers for more resources

This paper develops a stochastic geometry-based approach for the modeling, analysis, and optimization of wireless cloud caching networks comprised of multiple-antenna radio units (RUs) inside clouds with coordinated multi-point transmissions and guard zones. We consider Poisson cluster processes to model RUs and users, and the probabilistic content placement to cache files in RUs. Accordingly, we study the exact hit probability for a user of interest for two strategies; closest selection, where the user is served by the closest RU that has its requested file, and best power selection, where the serving RU having the requested file provides the maximum instantaneous received power at the user. As key steps for the analyses, the Laplace transform of out of cloud interference, the desired link distance distribution in the closest selection, and the desired link received power distribution in the best power selection are derived. Also, we approximate the derived exact hit probabilities for both the closest and the best power selections in such a way that the related objective functions for the content caching design of the network can lead to tractable concave optimization problems. Solving the optimization problems, we propose algorithms to efficiently find their optimal content placements. Finally, we investigate the impact of different parameters on the caching performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available