4.7 Article

A Two-Timescale Approach for Network Slicing in C-RAN

Journal

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
Volume 69, Issue 6, Pages 6656-6669

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2020.2985289

Keywords

Resource management; Network slicing; Quality of service; Uncertainty; Radio access networks; Interference; Programming; C-RAN; network slicing; two timescales; stochastic programming; profit maximization

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)

Ask authors/readers for more resources

Network slicing is a promising technique for cloud radio access networks (C-RANs). It enables multiple tenants (i.e., service providers) to reserve resources from an infrastructure provider. However, users' mobility and traffic variation result in resource demand uncertainty for resource reservation. Meanwhile, the inaccurate channel state information (CSI) estimation may lead to difficulties in guaranteeing the quality of service (QoS). To this end, we propose a two-timescale resource management scheme for network slicing in C-RAN, aiming at maximizing the profit of a tenant, which is the difference between the revenue from its subscribers and the resource reservation cost. The proposed scheme is under a hierarchical control architecture, which includes long timescale resource reservation for a slice and short timescale intra-slice resource allocation. To handle traffic variation, we utilize the statistics of users' traffic. Moreover, to guarantee the QoS under CSI uncertainty, we apply the uncertainty set of CSI for resource allocation among users. We formulate the profit maximization as a two-stage stochastic programming problem. In this problem, long timescale resource reservation for a slice is performed in the first stage with only the statistical knowledge of users' traffic. Given the decision in the first stage, short timescale intra-slice resource allocation is performed in the second stage, which is adaptive to real-time user arrival and departure. To solve the problem, we first transform the stochastic programming problem into a deterministic optimization problem. We further apply semidefinite relaxation to transform the problem into a mixed integer nonconvex optimization problem, which can be solved by combining branch-and-bound and primal-relaxed dual techniques. Simulation results show that our proposed scheme can well adapt to traffic variation and CSI uncertainty. It obtains a higher profit when compared with several baseline schemes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available