4.6 Article

Cooperative Optimal Collision Avoidance Laws for a Hybrid-Tailed Robotic Fish

Journal

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY
Volume 28, Issue 4, Pages 1569-1578

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCST.2019.2910478

Keywords

Collision avoidance; Servomotors; Shape; Robot sensing systems; Acceleration; Actuators; Aquatic robots; collision avoidance; ionic polymer metal composite; robotic fish

Funding

  1. National Science Foundation [IIS-1851817, CNS-1446557]

Ask authors/readers for more resources

This brief addresses the problem of collision avoidance by robotic fish that have a single caudal fin. The fish is hybrid-tailed in that the caudal fin is driven by a double-jointed mechanism. One joint is driven by a servomotor and the second joint is driven by an ionic polymer-metal composite (IPMC) actuator, which is often called an artificial muscle. For this type of robotic fish, collision avoidance is performed by employing a collision cone approach. Within the framework of the collision cone approach, Lyapunov-based methods are employed to determine analytical expressions of nonlinear guidance laws with which cooperative collision avoidance can be achieved. It is shown how these cooperative collision avoidance laws can be made optimal in the sense of minimizing an energy-like performance index. The conditions under which the developed guidance laws are robust to sensor measurement errors are determined. Simulations and experiments are performed to validate the guidance laws.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available