4.7 Article

Downlink Coverage and Rate Analysis of Low Earth Orbit Satellite Constellations Using Stochastic Geometry

Journal

IEEE TRANSACTIONS ON COMMUNICATIONS
Volume 68, Issue 8, Pages 5120-5134

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCOMM.2020.2990993

Keywords

Satellites; Geometry; Stochastic processes; Low earth orbit satellites; Analytical models; Interference; Downlink; Low Earth orbit (LEO) constellations; massive communication satellite networks; coverage probability; average achievable rate; SINR; stochastic geometry; point processes

Funding

  1. Nokia University Donation

Ask authors/readers for more resources

As low Earth orbit (LEO) satellite communication systems are gaining increasing popularity, new theoretical methodologies are required to investigate such networks' performance at large. This is because deterministic and location-based models that have previously been applied to analyze satellite systems are typically restricted to support simulations only. In this paper, we derive analytical expressions for the downlink coverage probability and average data rate of generic LEO networks, regardless of the actual satellites' locality and their service area geometry. Our solution stems from stochastic geometry, which abstracts the generic networks into uniform binomial point processes. Applying the proposed model, we then study the performance of the networks as a function of key constellation design parameters. Finally, to fit the theoretical modeling more precisely to real deterministic constellations, we introduce the effective number of satellites as a parameter to compensate for the practical uneven distribution of satellites on different latitudes. In addition to deriving exact network performance metrics, the study reveals several guidelines for selecting the design parameters for future massive LEO constellations, e.g., the number of frequency channels and altitude.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available