4.6 Article

Fracture properties estimation using distributed acoustic sensing recording of guided waves in unconventional reservoirs

Journal

GEOPHYSICS
Volume 85, Issue 5, Pages M85-M95

Publisher

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/GEO2019-0793.1

Keywords

-

Funding

  1. Israeli Ministry of Energy
  2. Chevron

Ask authors/readers for more resources

Perforation shots excite guided waves that propagate in a low-velocity unconventional shale reservoir. They have a frequency content of up to 700 Hz and are dispersive. We have analyzed horizontal crosswell perforation shots recorded by a distributed acoustic sensing (DAS) array. As guided waves propagate through a previously stimulated area, we observe a dramatic influence on the guided SH waves in the form of delayed arrival times, scattering, phase incoherency, and loss of amplitude and frequency. The leaky compressional waves undergo a gradual slowdown. Using a simple geometric analysis of the spatial locations of the distortions in the direct arrivals of the guided SH waves, we can estimate the half-lengths of the induced fractures, which range from 50% to 75% of the distance between the perforated and monitoring wells. Furthermore, we find that the propagation disturbances originate from the middle of the stimulated area. Other diffracted signals, notably from frac plugs, are clearly visible in the data. We report the first large-scale use of DAS records of guided waves. Their potential for high-resolution imaging and inversion of subsurface properties before and after hydraulic stimulation opens new possibilities for the use of seismology in optimizing production from unconventional reservoirs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available