4.6 Article

Evolution of Indian Ocean dipole and its forcing mechanisms in the absence of ENSO

Journal

CLIMATE DYNAMICS
Volume 47, Issue 7-8, Pages 2481-2500

Publisher

SPRINGER
DOI: 10.1007/s00382-016-2977-y

Keywords

Indian Ocean dipole; El Nino-Southern Oscillation (ENSO); Climate modeling

Funding

  1. National Monsoon Mission

Ask authors/readers for more resources

The evolution of Indian Ocean dipole (IOD) and its forcing mechanisms are examined based on the analysis of coupled model simulations that allow or suppress the El Nio-Southern Oscillation (ENSO) mode of variability. The model can reproduce the most salient observed features of IOD even without ENSO, including the relationships between the eastern and western poles at both the surface and subsurface, as well as their seasonality. This suggests that ENSO is not fundamental for the existence of IOD. It is demonstrated that cold (warm) sea surface temperature (SST) anomalies in the eastern Indian Ocean associated with IOD can be initiated by springtime Indonesian rainfall deficit (surplus) through local surface wind response. The growth of the SST anomalies depends on the initial local subsurface condition. Both the air-sea interaction and surface-subsurface interaction contribute to the development of IOD. The evolution of IOD can be represented by two leading extended empirical orthogonal function (EEOF) modes of tropical surface-subsurface Indian Ocean temperatures; one stationary and the other non-stationary. The onset, growth, and termination of IOD, as well as the transition to an opposite phase, can be interpreted as alternations between the non-propagating mode (EEOF1) and the eastward-propagating Kelvin wave (EEOF2). The evolution of IOD is also accompanied by a westward-propagating Rossby wave which is captured in the EEOF1 of the subtropical surface-subsurface Indian Ocean temperatures. Therefore, both Bjerknes feedback and a delayed oscillator operate during the evolution of IOD in the absence of ENSO also.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available