4.8 Article

Alterations in Intestinal Microbiota of Children With Celiac Disease at the Time of Diagnosis and on a Gluten-free Diet

Journal

GASTROENTEROLOGY
Volume 159, Issue 6, Pages -

Publisher

W B SAUNDERS CO-ELSEVIER INC
DOI: 10.1053/j.gastro.2020.08.007

Keywords

OTU; Pediatric; Microbiome; Short-chain Fatty Acids

Funding

  1. Nutricia Research Foundation - Biotechnology and Biological Sciences Research Council [BB/R006539/1]
  2. Catherine McEwan Foundation
  3. BBSRC [BB/R006539/1] Funding Source: UKRI

Ask authors/readers for more resources

BACKGROUND AND AIMS: It is not clear whether alterations in the intestinal microbiota of children with celiac disease (CD) cause the disease or are a result of disease and/or its treatment with a gluten-free diet (GFD). METHODS: We obtained 167 fecal samples from 141 children (20 with new onset CD, 45 treated with a GFD, 57 healthy children, and 19 unaffected siblings of children with CD) in Glasgow, Scotland. Samples were analyzed by 16S ribosomal RNA sequencing, and diet-related metabolites were measured by gas chromatography. We obtained fecal samples from 13 children with new-onset CD after 6 and 12 months on a GFD. Relationships between microbiota with diet composition, gastrointestinal function, and biomarkers of GFD compliance were explored. RESULTS: Microbiota a diversity did not differ among groups. Microbial dysbiosis was not observed in children with new-onset CD. In contrast, 2.8% (Bray-Curtis dissimilarity index, P = .025) and 2.5% (UniFrac distances, P = .027) of the variation in microbiota composition could be explained by the GFD. Between 3% and 5% of all taxa differed among all group comparisons. Eleven distinctive operational taxonomic units composed a microbe signature specific to CD with high diagnostic probability. Most operational taxonomic units that differed between patients on a GFD with new-onset CD vs healthy children were associated with nutrient and food group intake (from 75% to 94%) and with biomarkers of gluten ingestion. Fecal levels of butyrate and ammonia decreased during the GFD. CONCLUSIONS: Although several alterations in the intestinal microbiota of children with established CD appear to be effects of a GFD, specific bacteria were found to be distinct biomarkers of CD. Studies are needed to determine whether these bacteria contribute to pathogenesis of CD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available