4.7 Article

Observations on the impact of amylopectin and amylose structure on the swelling of starch granules

Journal

FOOD HYDROCOLLOIDS
Volume 103, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.foodhyd.2020.105663

Keywords

Starch granule swelling; Amylopectin backbone structure; Amylose structure; Inter-block segments; Amylopectin-amylose interaction

Ask authors/readers for more resources

Four different types of amylopectin structure have been reported in our earlier work based on the internal unit chain profile obtained from limit dextrins of amylopectin and data strongly suggested that chain length and organization of internal unit chains of amylopectin influence the gelatinization and retrogradation properties of the starch. Another important functional attribute is granule swelling that mainly contributes to the viscosifying property of starches. In this study, unmodified defatted amylose-containing starch granules possessing amylopectin of four types were subjected to swelling in warm water. The swelling pattern of the granules was related to the structural type of the amylopectin component. Granules having amylopectin of Type 1 structure started to swell at lower temperature (about 55 degrees C) and possessed more restricted swelling than most of the other starches. Type 1 starches lost their integrity at temperatures above 85 degrees C, whereas starch granules with Type 2 and 3 amylopectin were still intact at 95 degrees C. Starches with Type 4 amylopectin were heterogeneous with respect to their swelling: Lesser yam starch possessed comparatively restricted swelling between 75 and 95 degrees C, whereas canna and potato starch swelled extensively and disintegrated already before 95 degrees C. Some waxy samples were also included in the investigation and these were generally more sensitive to swelling than their non-waxy counterparts, showing that amylose restricts the swelling and stabilizes the granular structure, albeit there was no correlation between the apparent amylose content and the swelling of tested samples. Instead, the result suggested a correlation between the structure of amylopectin and the deposition of amylose in the starch granules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available