4.3 Article

Evaluating and engineering Saccharomyces cerevisiae promoters for increased amylase expression and bioethanol production from raw starch

Journal

FEMS YEAST RESEARCH
Volume 20, Issue 6, Pages -

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/femsyr/foaa047

Keywords

raw starch; amylase; promoter engineering; biofuels; consolidated bioprocessing; promoter-proximal intron

Funding

  1. South African National Research Foundation (NRF) [86423, 118528]

Ask authors/readers for more resources

Bioethanol production from starchy biomass via consolidated bioprocessing (CBP) will benefit from amylolytic Saccharomyces cerevisiae strains that produce high levels of recombinant amylases. This could be achieved by using strong promoters and modification thereof to improve gene expression under industrial conditions. This study evaluated eight endogenous S. cerevisiae promoters for the expression of a starch-hydrolysing alpha-amylase gene. A total of six of the native promoters were modified to contain a promoter-proximal intron directly downstream of the full-length promoter. Varying results were obtained; four native promoters outperformed the ENO1(P) benchmark under aerobic conditions and two promoters showed better expression under simulated CBP conditions. The addition of the RPS25A intron significantly improved the expression from most promoters, displaying increased transcript levels, protein concentrations and amylase activities. Raw starch-utilising strains were constructed through co-expression of selected alpha-amylase cassettes and a glucoamylase gene. The amylolytic strains displayed improved fermentation vigour on raw corn starch and broken rice, reaching 97% of the theoretical ethanol yield and converting 100% of the available carbon to products within 120 h in small-scale CBP fermentations on broken rice. This study showed that enhanced amylolytic strains for the conversion of raw starch to ethanol can be achieved through turnkey promoter selection and/or engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available