4.4 Article

Effects of wall compliance on multiharmonic pulsatile flow in idealized cerebral aneurysm models: comparative PIV experiments

Journal

EXPERIMENTS IN FLUIDS
Volume 61, Issue 7, Pages -

Publisher

SPRINGER
DOI: 10.1007/s00348-020-02998-4

Keywords

-

Funding

  1. JSPS KAKENHI [JP18K18356, JP20H04557]
  2. ImPACT program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan)
  3. Institute of Fluid Science, Tohoku University [J19I001, J20I044]

Ask authors/readers for more resources

The hemodynamics of intracranial aneurysm (IA) comprise complex phenomena that influence the IA's growth and rupture risk. It has long been argued in in silico studies of IA hemodynamics that wall compliance could be neglected, because it does not alter the hemodynamic patterns. The purpose of this work is to investigate the effect of wall compliance on IA hemodynamic patterns and flow field variables. We conducted comparative in vitro laser PIV measurements on rigid silicone and elastic PVA-H models of side-wall IA. In the first study of its kind, the interaction between wall dynamics and IA hemodynamics is investigated experimentally at high spatio-temporal resolution. It is evidently shown that wall compliance affects the phase-shift, flow rate and pressure damping, velocity and vorticity fields inside the aneurysm in space and time. Near-wall velocity field, which affects vascular endothelial cells in reality, was found to have larger oscillations in the compliant model, leading to higher turbulent kinetic energy. Wall shear stress was also affected by wall compliance, with lower time average values but larger temporal variations. These differences emphasize the importance of modeling the compliance behavior of cerebral arteries in the study of aneurysms and their treatment. [GRAPHICS] .

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available