4.5 Article

Historical Changes in the Vegetated Area of Salt Marshes

Journal

ESTUARIES AND COASTS
Volume 44, Issue 1, Pages 162-177

Publisher

SPRINGER
DOI: 10.1007/s12237-020-00781-6

Keywords

Salt marsh; LTER; Image analysis; Ponding; Marsh migration

Funding

  1. NSF [NSF14-26308, OCE18-32178, DEB 1832221, OCE 1637630]

Ask authors/readers for more resources

Salt marshes are important ecosystems that are being threatened by sea level rise and human activities. This study analyzed changes in vegetated marsh areas over 70 years at three LTER sites on the US East Coast, showing different patterns of change at each site. Factors affecting marsh dynamics are complex and vary in their impact on vegetation loss and gain.
Salt marshes are valuable ecosystems, and there is concern that increases in the rate of sea level rise along with anthropogenic activities are leading to the loss of vegetated habitat. The area of vegetated marsh can change not only through advance and retreat of the open fetch edge, but also due to channel widening and contracting, formation and drainage of interior ponds, formation and revegetation of interior mud flats, and marsh migration onto upland areas, each of which is influenced by different processes. This study used historical aerial photographs to measure changes in the extent of vegetated marsh over approximately 70 years at study marshes located in three long-term ecological research (LTER) sites along the US East coast: Georgia Coastal Ecosystems (GCE), Virginia Coast Reserve (VCR), and Plum Island Ecosystems (PIE). Marsh features were categorized into vegetated marsh, ponds, interior mud flats, and channels for three time periods at each site. The three sites showed different patterns of change in vegetated marsh extent over time. At the GCE study site, losses in vegetated marsh, which were primarily due to channel widening, were largely offset by channel contraction in other areas, such that there was little to no net change over the study period. The study marsh at VCR experienced extensive vegetated marsh loss to interior mud flat expansion, which occurred largely in low-lying areas. However, this loss was counterbalanced by marsh gain due to migration onto the upland, resulting in a net increase in vegetated marsh area over time. Vegetated marsh at PIE decreased over time due to losses from ponding, channel widening, and erosion at the open fetch marsh edge. Digital elevation models revealed that the vegetated areas of the three marshes were positioned at differing elevations relative to the tidal frame, with PIE at the highest and VCR at the lowest elevation. Understanding the patterns of vegetation loss and gain at a given site provides insight into what factors are important in controlling marsh dynamics and serves as a guide to potential management actions for marsh protection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available