4.8 Article

Machine Learning Models of Groundwater Arsenic Spatial Distribution in Bangladesh: Influence of Holocene Sediment Depositional History

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 54, Issue 15, Pages 9454-9463

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.0c03617

Keywords

-

Funding

  1. National Natural Science Foundation of China [41831279, 41772265]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA20060402]
  3. Shenzhen Science and Technology Innovation Commission [KQJSCX20170728163124680]

Ask authors/readers for more resources

Recent advances in machine learning methods offer the opportunity to improve risk assessment and to decipher factors influencing the spatial variability of groundwater arsenic ([As](gw)). A systematic comparison reveals that boosted regression trees (BRT) and random forest (RF) outperform logistic regression. The probability of [As](gw), exceeding 5 mu g/L (approximate median value of Bangladesh [As](gw)), 10 mu g/L (WHO provisional guideline value), and 50 mu g/L (Bangladesh drinking water standard) is modeled by BRT and RF methods for Bangladesh and its four subregions demarcated by major rivers. Of the 109 geo-environmental and hydrochemical predictor variables, phosphorus and iron emerge as the most important across spatial scales, consistent with known As mobilization mechanisms. Well depth is significant only when hydrochemical parameters are not considered, consistent with prior studies. A peak of probability of [As](gw). exceedance at similar to 30 m depth is evident in the partial dependence plots (PDPs) for spatial-parameter-only models but not in the equivalent all-parameter models, suggesting that sediment depositional history explains interdependent spatial patterns of groundwater As-P-Fe in Holocene aquifers. The South region exhibits a decrease of probability of [As](gw), exceedance below 150 m depth in PDPs for spatial-parameter-only and all-parameter models, supporting that the deeper Pleistocene aquifer is a low-As water resource.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available