4.7 Article

Synergistic effects of compost, cow bile and bacterial culture on bioremediation of hydrocarbon-contaminated drill mud waste

Journal

ENVIRONMENTAL POLLUTION
Volume 266, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2020.115202

Keywords

Bioremediation; Total petroleum hydrocarbon; Drill mud tank; Surface tension

Ask authors/readers for more resources

Bioremediation has gained global prominence as an effective method for treating hydrocarbon-contaminated drill mud waste (HCDW). However, the problem of low nutrient content, bioavailability and microbial presence remain largely unresolved. In this study, the synergistic effects of compost, cow bile and bacterial culture on the degradation rate of HCDW was investigated. A homogenized HCDW sample (80 kg) obtained from 25 different drill mud tanks was divided into 20 portions (4 kg each) and each adjusted to 1.4% nitrogen content thorn 20 ml cow bile (i.e., basic treatment). Pure cultures of Brevi-bacterium casei (Bc) and Bacillus zhangzhouensi (Bz) and their mixture (BcBz) were subsequently added to 12 of the amended HCDW (basic) to undergo a 6-week incubation. A portion of the unamended HCDW (2 kg) was used as control. Initial pH, electrical conductivity and surface tension values of the HCDW were 8.83, 2.34 mS/cm and 36.5 mN/m, respectively. Corresponding values for total petroleum hydrocarbon (TPH), total nitrogen and total plate count bacteria were 165 g/kg, 0.04% and 4.4 x 10(2) cfu/ml. The treatments led to a substantial reduction in TPH (p < 0.05) while the control had no significant effect (p > 0.05). TPH reduction after the experimental period occurred in the order: basic thorn BcBz (99.7%) > basic thorn Bz (99.5%) > basic thorn Bc (99.2%) > basic (95.2%) > control (0.06%). Multiple regression analysis revealed significant effect of total plate count, pH, CN ratio and electrical conductivity (R-2 = 0.87, p = 0.05) on the degradation of TPH in the HCDW. The study demonstrates strong interactive effects of compost, cow bile and bacteria culture on the remediation of HCDW, which can be applied to boost the efficiency of the bioremediation technique. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available