4.7 Article

The negative effect of a vertically-transmitted fungal endophyte on seed longevity is stronger than that of ozone transgenerational effect

Journal

ENVIRONMENTAL AND EXPERIMENTAL BOTANY
Volume 175, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envexpbot.2020.104037

Keywords

Lolium multiflorum; Italian ryegrass; Epichloe occultans; Maternal effect

Funding

  1. University of Buenos Aires UBACyT [20020130100030BA]
  2. National Scientific and Technical Research Council [PIP 0019]
  3. National Agency for Scientific and Technological Promotion [PICT 2016-3598]

Ask authors/readers for more resources

The transition from mother plant seed production to seedlings recruitment is critical for annual plant species but also for vertically transmitted microbial symbionts. Evidence indicates that microbial symbionts play important roles in plant response to environmental changes. However, their role in plant facing gaseous tropospheric pollutants such as the highly reactive and phytotoxic ozone, have been scarcely studied. Here, we experimentally tested the consequences of maternal plant exposure to ozone on the longevity of Lohum mutiflontm seeds mediated by a vertically-transmitted fungal endophyte (Epichloe occultans). Seeds were produced by mother plants exposed to contrasting levels of ozone (low and high concentrations) in two phases of the life cycle (vegetative and reproductive). We first characterized the consequences of plant exposure to ozone on the state of the antioxidant glutathione in the seeds. Then, we examined viability dynamics of the seeds through an accelerated ageing trial and followed the physiological variables seed water content (SWC) and electrical conductivity (EC). Irrespectively of maternal ozone, seeds produced by endophyte-symbiotic plants presented higher contents of the oxidised form of glutathione. In the same direction, the fungal endophyte presence was associated with a dramatic reduction in seed longevity. The SWC was higher in endophyte-symbiotic seeds that in endophyte-free seeds. As time under accelerated ageing condition advanced, EC increased more in endophytesymbiotic seeds than in endophyte-free seeds. Mother plant exposure to ozone tended to have a negative synergistic effect with the endophyte symbiosis. Ozone transgenerational effect was not detected on endophyte-free seeds. Our work contributes to understand the transgenerational effects of vertically transmitted fungal endophytes in plants in response to a currently important factor of stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available