4.7 Article

From sustainability assessment to sustainability management for policy development: The case for electric vehicles

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 216, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2020.112937

Keywords

Hybrid life cycle sustainability assessment; Global multiregional input-output analysis; Multi-objective decision making; Electric vehicles; Sustainable transportation; Sustainability management

Funding

  1. Marubeni [QUEX-CENG-MJF-EV-18/19]

Ask authors/readers for more resources

In this research, a hybrid life cycle sustainability assessment and multi-objective decision making are jointly applied to highlight how sustainability assessment results can be used for sustainable management and further country-level policymaking, and Qatar is selected as a case study to implement the proposed method. 14 macro-level sustainability indicators are quantified for four different technologies of sport utility vehicles (SUV), including internal combustion vehicles (ICV), hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and battery electric vehicles (BEV), using a global multiregional input-output analysis to distinguish in between regional and global supply chain-related impacts. A compromise programming model is developed based on the sustainability assessment results to determine what should be the optimal distribution of alternative vehicles based on varying importance of different sustainability indicators and scope of the analysis. The optimal vehicle distributions are determined for two different battery charging scenarios, through the existing electricity grid and solar energy. Furthermore, the optimal distributions are also investigated when the scope of the analysis is limited to regional boundary versus the total impacts encompassing the global supply chains in addition to the regional impacts. When environmental indicators are assigned the top priority (100%), the results show that HEVs should compromise over 90% of the vehicle fleet. In a balanced weighting case, the optimal vehicle distribution consists of around 81% HEV and 19% BEV if charged through the electricity grid. The proposed method can provide important insights for developing policies to achieve sustainable and efficient policies considering various aspects including the scope of assessment and relative importance of quantified sustainability indicators.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available