4.5 Article

Investigation of Inorganic Phase Change Material for a Semi-Transparent Photovoltaic (STPV) Module

Journal

ENERGIES
Volume 13, Issue 14, Pages -

Publisher

MDPI
DOI: 10.3390/en13143582

Keywords

solar Photovoltaic (PV) module; building envelopes; solar facades; semi-transparent photovoltaic; inorganic phase change material; Building integrated photovoltaic (BIPV); Phase change material (PCM) for solar; graphene oxide; Glauber salt

Categories

Ask authors/readers for more resources

The semi-transparent photovoltaic (STPV) module is an emerging technology to harness the solar energy in the building. Nowadays, buildings are turning from energy consumers to energy producers due to the integration of the STPV module on the building envelopes and facades. In this research, the STPV module was integrated on the rooftop window of the experimental room at Kovilpatti (9 degrees 10 ' 0 '' N, 77 degrees 52 ' 0 '' E), Tamil Nadu, India. The performance of the STPV modules varies with respect to the geographical location, incident solar radiation, and surface temperature of the module. The surface temperature of the STPV module was regulated by the introduction of the mixture of graphene oxide and sodium sulphate decahydrate (Na2SO4 center dot 10H(2)O). The various concentration of the graphene oxide was mixed together with the Na2SO4 center dot 10H(2)O to enhance the thermal conductivity. The thermal conductivity of the mixture 0.3 concentration was found to be optimum from the analysis. The instantaneous peak temperature of the semi-transparent photovoltaic phase change material (STPV-PCM) module was reduced to 9 degrees C during summer compared to the reference STPV. At the same time, the energy conversion efficiency was increased by up to 9.4% compared to the conventional STPV module. Due to the incorporation of the graphene oxide and Na2SO4 center dot 10H(2)O, the daily output power production of the STPV module was improved by 12.16%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available