4.6 Article

Shifting-reference concentration cells to refine composition-dependent transport characterization of binary lithium-ion electrolytes

Journal

ELECTROCHIMICA ACTA
Volume 358, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2020.136688

Keywords

Electrolyte thermodynamics; Transport characterization; Multicomponent diffusion; Concentrated-solution theory

Funding

  1. Faraday Institution Multiscale Modelling Project under EPSRC [FIRG003, EP/S003053/1]

Ask authors/readers for more resources

We present a novel 'shifting-reference concentration-cell' method, altering the traditional protocol for measuring liquid-junction potentials by using a sequence of reference concentrations in regularly spaced intervals, rather than a fixed reference. The method, applied to solutions of lithium hexafluorophosphate (LiPF6) in propylene carbonate (PC) and ethyl methyl carbonate (EMC) at 25 degrees C, helps to determine thermodynamic factors more accurately, and is useful across a wider concentration range. For LiPF6:PC, good agreement with prior fixed-reference measurements is shown, and new data at low concentrations is consistent with Debye-Huckel theory. Original composition-dependent property correlations are produced for LiPF6:EMC up to 2 M, including the density and thermodynamic factor, as well as isothermal-transport properties such as transference number, conductivity, diffusivity, and viscosity. Polarization-relaxation simulations validate these correlations. For LiPF6:EMC, the low thermodynamic factor and cation/anion Stefan-Maxwell diffusivity, as well as Walden analysis, suggest that ion association dominates, even at high dilution. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available