4.7 Article

Bacterial communities on soil microplastic at Guiyu, an E-Waste dismantling zone of China

Journal

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY
Volume 195, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2020.110521

Keywords

Microplastic; Soil; Bacterial communities; Guiyu

Funding

  1. National Natural Science Foundation of China [41673091, U1501234]
  2. National Key Research and Development Program of China [2018YFC1802800]

Ask authors/readers for more resources

Recent studies of microplastic have focused on aquatic environment, but its impacts on soil ecosystems were poorly understood, particularly on bacterial communities. In this study, the bacterial taxon and functional composition of soil microplastic-attached communities at Guiyu, a notorious e-waste dismantling area in Guangdong Province, China, were investigated by means of high-throughput sequencing. The results revealed that fundamental difference in bacterial communities existed among microplastics selected from three plots with different dismantling methods and their surroundings, suggesting that microplastic surface created a new ecological niche in soil environment, and the bacteria adapted well to the surface-related lifestyle. The formation of microplastic-attached bacteria depended not only on various dismantled plastic materials, but also on disassembly methods that caused different soil physicochemical characters which might also influence the bacterial communities. As the hydrocarbon degraders, the family Hyphomonadaceae were also found on soil microplastic, further confirming that microorganisms played a role in biodegrading microplastic in e-waste zone. The analysis of functional profiles speculated that microplastic-attached bacteria had the potential to degrade pollutants. This study provides a new perspective for exploring microplastic-associated bacteria and increasing our understanding of microplastic pollution in terrestrial ecosystems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available