3.8 Article

Whole-Exome Molecular Autopsy After Exertion-Related Sudden Unexplained Death in the Young

Journal

CIRCULATION-CARDIOVASCULAR GENETICS
Volume 9, Issue 3, Pages 259-+

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCGENETICS.115.001370

Keywords

autopsy; exome; genetic testing; mutation; phenotype

Funding

  1. Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program
  2. Sheikh Zayed Saif Mohammed Al Nahyan Fund in Pediatric Cardiology Research
  3. Dr Scholl Fund
  4. Hannah M. Wernke Memorial Fund
  5. Mayo Clinic's Center for Individualized Medicine

Ask authors/readers for more resources

Background-Targeted postmortem genetic testing of the 4 major channelopathy-susceptibility genes (KCNQ1, KCNH2, SCN5A, and RYR2) have yielded putative pathogenic mutations in <= 30% of autopsy-negative sudden unexplained death in the young (SUDY) cases with highest yields derived from the subset of exertion-related SUDY. Here, we evaluate the role of whole-exome sequencing in exertion-related SUDY cases. Methods and Results-From 1998 to 2010, 32 cases of exertion-related SUDY were referred by Medical Examiners for a cardiac channel molecular autopsy. A mutational analysis of the major long-QT syndrome-susceptibility genes (KCNQ1, KCNH2, and SCN5A) and catecholaminergic polymorphic ventricular tachycardia-susceptibility gene (RYR2) identified a putative pathogenic mutation in 11 cases. Whole-exome sequencing was performed on the remaining 21 targeted gene-negative SUDY cases. After whole-exome sequencing, a gene-specific surveillance of all genes (N = 100) implicated in sudden death was performed to identify putative pathogenic mutation(s). Three of these 21 decedents had a clinically actionable, pathogenic mutation (CALM2-F90L, CALM2-N98S, and PKP2-N634fs). Of the 18 remaining cases, 7 hosted at least 1 variant of unknown significance with a minor allele frequency <1:20000. The overall yield of pathogenic mutations was higher among decedents aged 1 to 10 years (10/11, 91%) than those aged 11 to 19 years (4/21, 19%, P= 0.0001). Conclusions-Molecular screening in this clinical scenario is appropriate with a pathogenic mutation detection rate of 44% using direct DNA sequencing followed by whole-exome sequencing. Only 5 of the 100 interrogated sudden death genes hosted actionable pathogenic mutations for more than one third of these exertion-related, autopsy-negative SUDY cases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available