4.7 Review

The rise of molecular simulations in fragment-based drug design (FBDD): an overview

Journal

DRUG DISCOVERY TODAY
Volume 25, Issue 9, Pages 1693-1701

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.drudis.2020.06.023

Keywords

-

Funding

  1. MIUR (PRIN2017) [2017MT3993]

Ask authors/readers for more resources

Fragment-based drug discovery (FBDD) is an innovative approach, progressively more applied in the academic and industrial context, to enhance hit identification for previously considered undruggable biological targets. In particular, FBDD discovers low-molecular-weight (LMW) ligands (<300 Da) able to bind to therapeutically relevant macromolecules in an affinity range from the micromolar (mu M) to millimolar (mM). X-ray crystallography (XRC) and nuclear magnetic resonance (NMR) spectroscopy are commonly the methods of choice to obtain 3D information about the bound ligand-protein complex, but this can occasionally be problematic, mainly for early, low-affinity fragments. The recent development of computational fragment-based approaches provides a further strategy for improving the identification of fragment hits. In this review, we summarize the state of the art of molecular dynamics simulations approaches used in FBDD, and discuss limitations and future perspectives for these approaches.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available