4.4 Article

A Holling Type II Discrete Switching Host-Parasitoid System with a Nonlinear Threshold Policy for Integrated Pest Management

Journal

DISCRETE DYNAMICS IN NATURE AND SOCIETY
Volume 2020, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2020/9425285

Keywords

-

Funding

  1. National Natural Science Foundation of China (NSFC) [61772017, 11631012]
  2. Fundamental Research Funds for the Central Universities [GK201901008]

Ask authors/readers for more resources

A nonlinear discrete switching host-parasitoid model with Holling type II functional response function, in which the switch is guided by an economic threshold (ET), is proposed. Thus, if the weighted density of two generations of the host population increases and exceeds the ET, then integrated pest management (IPM) measures are enacted, i.e., biological and chemical measures are implemented together, assuming that the chemical immediately precedes the biological inputs to avoid pesticide-induced deaths of the natural enemies. First, the existence and local stability of the equilibria of two subsystems were studied, and the existence and coexistence of several types of equilibria of a nonlinear switching system were analysed. Next, the nonlinear switching system was investigated by numerical simulation, showing that the system exhibits quite complex dynamic behaviour. A two-dimensional bifurcation diagram revealed the existence and coexistence regions of different types of equilibria including regular and virtual equilibria. Moreover, period-adding bifurcations in two-dimensional parameter spaces were found. One-dimensional bifurcation diagrams revealed that the system has periodic, quasiperiodic, and chaotic solutions, Neimark-Sacker bifurcation, multiple coexisting attractors, period-doubling bifurcations, period-halving bifurcations, and so on. Finally, the initial densities of hosts and parasitoids associated with host outbreaks and their biological implications are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available