4.4 Article

Synthesis and Evaluation of Antimicrobial Activity and Molecular Docking of New N-1,3-thiazol-2-ylacetamides of Condensed Pyrido[3′,2′:4,5] furo(thieno)[3,2-d]pyrimidines

Journal

CURRENT TOPICS IN MEDICINAL CHEMISTRY
Volume 20, Issue 24, Pages 2192-2209

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1568026620666200628145308

Keywords

furo(thieno)[3,2-d]pyrimidin-7(8)-ones; furo(thieno)[3,2-d]pyrimidin-4(7,8)-thiones; 2-chloro-N-1,3-thiazol 2-ylacetamide; Alkylation; Antimicrobial activity; Biological activity

Funding

  1. Ministry of Education, Science and Terchnological Development of Republic of Serbia [451-03-68/2020-14/200007]

Ask authors/readers for more resources

Background: From the literature it is known that many derivatives of fused thienopyrimidines and furopyrimidines possess broad spectrum of biological activity. Objectives: The current studies describe the synthesis and evaluation of antimicrobial activity of some new N-1,3-thiazol-2-ylacetamides of pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidines. Methods: By cyclocondensation of ethyl 1-aminofuro(thieno)[2,3-b]pyridine-2-carboxylates 1 with formamide were converted to the pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidin-7(8)-ones 2.Alkylation of compound 2 with 2-chloro-N-1,3-thiazol-2-ylacetamide led to the aimed N-1,3-thiazol-2-ylaceta-mides of pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidines 3. Starting from compound 2 the relevant S-alkylated derivatives of pyrido[3',2':4,5]furo(thieno)[3,2-d]pyrimidines 6 were also synthesized. Results: All the compounds showed antibacterial activity to non-resistant strains. Compounds 3a-3m showed antibacterial activity with MIC/MBC at 0.08-2.31 mg/mL/0.11-3.75 mg/mL .The two most active compounds, 3j and 6b, appeared to be more active towards MRSA than the reference drugs. Ilalf of the tested compounds appeared to be equipotent/more potent than ketoconazole and more potent than bifonazole. The docking analysis provided useful information about the interactions occurring between the tested compounds and the different enzymes. Conclusion: Gram-negative and Gram-positive bacteria and fungi showed different response towards tested compounds, indicating that different substituents may lead to different modes of action or that the metabolism of some bacteria/fungi was better able to overcome the effect of the compounds or adapt to it.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available