4.3 Review

miRNA Regulation of T Cells in Islet Autoimmunity and Type 1 Diabetes

Journal

CURRENT DIABETES REPORTS
Volume 20, Issue 9, Pages -

Publisher

CURRENT MEDICINE GROUP
DOI: 10.1007/s11892-020-01325-9

Keywords

Immune regulation; Islet autoimmunity; Type 1 diabetes; Regulatory T cell; miRNA; Biomarker

Funding

  1. Projekt DEAL

Ask authors/readers for more resources

Purpose of Review Regulatory T cells (Tregs) are critical contributors to immune homeostasis and their dysregulation can lead to the loss of immune tolerance and autoimmune diseases like type 1 diabetes (T1D). Recent studies have highlighted microRNAs (miRNAs) as important regulators of the immune system, by fine-tuning relevant genes in various immune cell types. In this review article, we discuss recent insights into miRNA regulation of immune tolerance and activation. Specifically, we discuss how the dysregulation of miRNAs in T cells contributes to their aberrant function and the onset of islet autoimmunity, as well as their potential as targets of novel intervention strategies to interfere with autoimmune activation. Recent Findings Several studies have shown that the dysregulation of individual miRNAs in T cells can contribute to impaired immune tolerance, contributing to onset and progression of islet autoimmunity. Importantly, the targeting of these miRNAs, including miR-92a, miR-142-3p and miR-181a, resulted in relevant effects on downstream pathways, improved Treg function and reduced islet autoimmunity in murine models. miRNAs are critical regulators of immune homeostasis and the dysregulation of individual miRNAs in T cells contributes to aberrant T cell function and autoimmunity. The specific targeting of individual miRNAs could improve Treg homeostasis and therefore limit overshooting T cell activation and islet autoimmunity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available