4.7 Article

Deep machine learning approach to develop a new asphalt pavement condition index

Journal

CONSTRUCTION AND BUILDING MATERIALS
Volume 247, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2020.118513

Keywords

Pavement monitoring; Pavement distresses detection; Deep learning; Google API; Machine learning; Pavement condition prediction; YOLO; Image processing

Ask authors/readers for more resources

Pavement condition assessment provides information to make more cost-effective and consistent decisions regarding management of pavement network. Generally, pavement distress inspections are performed using sophisticated data collection vehicles and/or foot-on-ground surveys. In either approach, the process of distress detection is human-dependent, expensive, inefficient, and/or unsafe. Automated pavement distress detection via road images is still a challenging issue among pavement researchers and computer-vision community. In recent years, advancement in deep learning has enabled researchers to develop robust tools for analyzing pavement images at unprecedented accuracies. Nevertheless, deep learning models necessitate a big ground truth dataset, which is often not readily accessible for pavement field. In this study, we reviewed our previous study, which a labeled pavement dataset was presented as the first step towards a more robust, easy-to-deploy pavement condition assessment system. In total, 7237 google street-view images were extracted, manually annotated for classification (nine categories of distress classes). Afterward, YOLO (you look only once) deep learning framework was implemented to train the model using the labeled dataset. In the current study, a U-net based model is developed to quantify the severity of the distresses, and finally, a hybrid model is developed by integrating the YOLO and U-net model to classify the distresses and quantify their severity simultaneously. Various pavement condition indices are developed by implementing various machine learning algorithms using the YOLO deep learning framework for distress classification and U-net for segmentation and distress densification. The output of the distress classification and segmentation models are used to develop a comprehensive pavement condition tool which rates each pavement image according to the type and severity of distress extracted. As a result, we are able to avoid over-dependence on human judgement throughout the pavement condition evaluation process. The outcome of this study could be conveniently employed to evaluate the pavement conditions during its service life and help to make valid decisions for rehabilitation or reconstruction of the roads at the right time. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available