4.4 Article

Effect Chain Analysis of Supercritical Fuel Disintegration Processes Using an LES-based Entropy Generation Analysis

Journal

COMBUSTION SCIENCE AND TECHNOLOGY
Volume 192, Issue 11, Pages 2171-2188

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/00102202.2020.1770239

Keywords

Supercritical fluid flow; turbulent round jet; fuel disintegration; large eddy simulation; entropy generation; irreversibility

Funding

  1. DFG [SFB-TRR 75]

Ask authors/readers for more resources

In this work, a large eddy simulation (LES) technique combined with entropy generation analysis (EGA) is employed in order to investigate the complex physics of fuel injection under supercritical conditions. In particular, physical processes that are relevant for the fuel breakup and mixing are identified and their effects on the overall disintegration process are quantified. Thereby, it turned out that (1) a chain of four consecutive physical processes (shearing, separation, pseudo-boiling, and turbulent mixing) drive the overall jet disintegration, (2) entropy is primarily generated due to thermal energy conversion processes including pseudo-boiling rather than hydrodynamics, and (3) LES technique combined with EGA proved to be a promising approach for effect chain analyses, not only for simple flows, but also for those with complex thermodynamic properties like supercritical fuel injection. Based on these findings, a physical model of the disintegration process of a cryogenic jet flow injected at supercritical conditions is proposed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available