4.7 Article

Construction of selenium-embedded mesoporous silica with improved antibacterial activity

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 190, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.colsurfb.2020.110910

Keywords

Selenium; Mesoporous silica; Antibacterial activity

Funding

  1. Natural Science Foundation of Shanghai [19ZR1401000]
  2. Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure [SKL201709SIC]

Ask authors/readers for more resources

In this work, different concentrations of Se-incorporated mesoporous silica nanospheres (MSNs) (5Se/MSNs and 10Se/MSNs) were successfully synthesized via an in-situ one-pot method. Their physicochemical properties were characterized by X-ray diffraction (XRD), transmission electron microscopy, and X-ray photoelectron spectroscopy (XPS). The release behaviors of Se and Si were investigated in a phosphate-buffered saline (pH = 5.5, 7.4) solution (PBS). In vitro antibacterial properties of the prepared samples were evaluated with Staphylococcus aureus (S. aureus) and Escherichia coll. (E. coli). The cytocompatibilities of the samples were then assessed using L929 cells. Se nanoparticles were successfully loaded onto the outer and inner surfaces of hierarchical mesoporous silica. The sizes of the Se/MSNs nanoparticles were approximately 120 nm for 5Se/MSNs and 210 nm for 10Se/MSNs. The XRD and XPS results showed that Se mainly existed in the form of Se degrees in the samples. The Se/MSNs exhibited stable and sustained release of both Si and Se in PBS solution. In vitro antibactericidal tests indicated that the Se/MSNs could exhibit better antibacterial activity against S. aureus than pure Se nanoparticles after 6 and 24 h of culturing. The minimal inhibitory concentration (MIC) of 10Se/MSN was 100 mu g mL(-1). However, the Se/MSNs exhibited no inhibitory effect on E. coli bacteria. Furthermore, all the samples exhibited excellent cell viability. These studies demonstrate initial in vitro antibacterial activity and good cytocompatibility of Se/MSNs and their potential application in antibacterial nanomedicine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available