4.5 Article

Potential role of endothelial cell surface ectopic redox complexes in COVID-19 disease pathogenesis

Journal

CLINICAL MEDICINE
Volume 20, Issue 5, Pages E146-E147

Publisher

ROY COLL PHYS LONDON EDITORIAL OFFICE
DOI: 10.7861/clinmed.2020-0252

Keywords

COVID-19; ectopic electron transfer chain; endothelium; oxidative stress; oxygen

Ask authors/readers for more resources

The novel coronavirus infectious disease (COVID-19) has rapidly spread and poses a great challenge to researchers, both in elucidating its pathogenic mechanism and developing effective treatments. It has been recently proposed that COVID-19 is an endothelial disease. Indeed, the COVID-19 virus binds to angiotensin-converting enzyme type 2 (ACE2), which is expressed in endothelial cells. ACE2 could be implicated in the production of reactive oxygen species (ROS) caused by endothelial dysfunction due to viral damage. Consequently, oxidative stress could prime these cells to acquire a pro-thrombotic and pro-inflammatory phenotype, predisposing patients to thromboembolic and vasculitic events and to disseminated intravascular coagulopathy (DIC). This implies a pivotal role played by oxygen in the pathogenetic mechanism of COVID-19 disease, in that its availability would tune the oxidant state and consequent damage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available