4.7 Article

Downregulation of LAPTM4B Contributes to the Impairment of the Autophagic Flux via Unopposed Activation of mTORC1 Signaling During Myocardial Ischemia/Reperfusion Injury

Journal

CIRCULATION RESEARCH
Volume 127, Issue 7, Pages E148-E165

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.119.316388

Keywords

autophagosomes; autophagy; heart; lysosomes; mice

Funding

  1. National Natural Sciences Foundation of China [81770402, 81520108004]
  2. National Key R&D Program of China [2017YFA0103700, 2016YFC1301200, 2018YFA0508300, 2018YFA0109100]
  3. Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) [XDA16010201]
  4. Guangdong Innovative and Entrepreneurial Research Team Program [2016ZT06S029]
  5. Shanghai Jiao Tong University Affiliated Sixth People's Hospital

Ask authors/readers for more resources

Rationale: Impaired autophagic flux contributes to ischemia/reperfusion (I/R)-induced cardiomyocyte death, but the underlying molecular mechanisms remain largely unexplored. Objective: To determine the role of LAPTM4B (lysosomal-associated transmembrane protein 4B) in the regulation of autophagic flux and myocardial I/R injury. Methods and Results: LAPTM4B was expressed in murine hearts but downregulated in hearts with I/R (30 minutes/2 hours) injury and neonatal rat cardiomyocytes with hypoxia/reoxygenation (6 hours/2 hours) injury. During myocardial reperfusion, LAPTM4B-knockout (LAPTM4B(-/-)) mice had a significantly increased infarct size and lactate dehydrogenase release, whereas adenovirus-mediated LAPTM4B-overexpression was cardioprotective. Concomitantly, LAPTM4B(-/-)mice showed higher accumulation of the autophagy markers LC3-II (microtubule-associated protein 1A/1B-light chain 3), but not P62, in the I/R heart, whereas they did not alter chloroquine-induced further increases of LC3-II and P62 in both sham and I/R hearts. Conversely, LAPTM4B-overexpression had opposite effects. The hypoxia/reoxygenation-reduced viability of neonatal rat cardiomyocytes, ratio of autolysosomes/autophagosomes, and function of lysosomes were further decreased by LAPTM4B-knockdown but reversed by LAPTM4B-overexpression. Moreover, the LAPTM4B-overexpression-mediated benefits were abolished by knockdown of lysosome-associated membrane protein-2 (an autophagosome-lysosome fusion protein) in vivo and by the autophagy inhibitor bafilomycin A1 in vivo. In contrast, rapamycin (Rapa) successfully restored the impaired autophagic flux in LAPTM4B(-/-)mice and the subsequent myocardial I/R injury. Mechanistically, LAPTM4B regulated the activity of mTORC1 (mammalian target of rapamycin complex 1) via interacting with mTOR through its EC3 (extracelluar) domain. Thus, mTORC1 was overactivated in LAPTM4B(-/-)mice, leading to the repression of TFEB (transcription factor EB), a master regulator of lysosomal and autophagic genes, during myocardial I/R. The mTORC1 inhibition or TFEB-overexpression rescued the LAPTM4B(-/-)-induced impairment in autophagic flux and I/R injury, whereas TFEB-knockdown abolished the LAPTM4B-overexpression-mediated recovery of autophagic flux and cardioprotection. Conclusions: The downregulation of LAPTM4B contributes to myocardial I/R-induced impairment of autophagic flux via modulation of the mTORC1/TFEB pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available