4.6 Article

Exploring the robustness of urban bus network: A case from Southern China

Journal

CHINESE JOURNAL OF PHYSICS
Volume 65, Issue -, Pages 389-397

Publisher

ELSEVIER
DOI: 10.1016/j.cjph.2020.03.012

Keywords

Urban bus network; Directed graphs; Centrality; Network analysis

Funding

  1. 'Middle-aged and young Backbone Teacher program of Capital University of Economics and Business'

Ask authors/readers for more resources

The robustness of urban bus network is essential to a city that heavily relies on buses as its main transportation solution. In this paper, the urban bus network has been modeled as a directed and space L network, and Changsha, a transportation hub of nearly 8 million people and hundreds of bus lines in southern China, is taken as a case. Based on the quantitative analyses of the topological properties, it is found that Changsha urban bus network is a scale-free network, not a small-world network. To evaluate the robustness of the network, five scenarios of network failure are simulated, including a random failure and four types of intentional attacks that differed in key node identification methods (i.e., unweighted degree or betweenness centrality) and attack strategies (i.e., normal or cascading attack). It is revealed that intentional attacks are more destructive than a random failure, and cascading attacks are more disruptive than normal attacks in the urban bus network. In addition, the key nodes identification methods are found to play a critical role in the robustness of the urban bus network. Specifically, cascading attack could be more disruptive when the betweenness centrality is used to identify key nodes; in contrast, normal attack could be more disruptive when the unweighted degree is used to identify key nodes. Our results could provide reference for risk management of urban bus network.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available