4.7 Article

Pesticides in aquatic environments and their removal by adsorption methods

Journal

CHEMOSPHERE
Volume 253, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.126646

Keywords

Adsorption; Biochar; Graphene; Pesticides; Water; Wastewater

Funding

  1. Hiroshima University

Ask authors/readers for more resources

Although pesticides are widely used in agriculture, industry and households, they pose a risk to human health and ecosystems. Based on target organisms, the main types of pesticides are herbicides, insecticides and fungicides, of which herbicides accounted for 46% of the total pesticide usage worldwide. The movement of pesticides into water bodies occurs through run-off, spray drift, leaching, and subsurface drainage, all of which have negative impacts on aquatic environments and humans. We sought to define the critical factors affecting the fluxes of contaminants into receiving waters. We also aimed to specify the feasibility of using sorbents to remove pesticides from waterways. In Karun River in Iran (1.21 x 10(5) ng/L), pesticide concentrations are above regulatory limits. The concentration of pesticides in fish can reach 26.1 x 10(3) mu g/kg, specifically methoxychlor herbicide in Perca fluviatilis in Lithuania. During the last years, research has focused on elimination of organic pollutants, such as pesticides, from aqueous solution. Pesticide adsorption onto low-cost materials can effectively remediate contaminated waters. In particular, nanoparticle adsorbents and carbon-based adsorbents exhibit high performance (nearly 100%) in removing pesticides from water bodies. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available