4.7 Article

The formation of disinfection by-products from the chlorination and chloramination of amides

Journal

CHEMOSPHERE
Volume 248, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.125940

Keywords

Disinfection by-products; Amide precursor; Chlor(am)Ination; Bromine incorporation factor; Haloacetamides

Ask authors/readers for more resources

This study examined the potential of six aliphatic and aromatic amides, commonly found in natural waters or used as chemical aids in water treatment, to act as organic precursors for nine haloacetamides (HAcAms), five haloacetonitriles (HANs), regulated trihalomethanes (THMs) and haloacetic acids (HAAs) upon chlorination and chloramination. The impact of key experimental conditions, representative of drinking water, including pH (7 & 8), retention time (4 & 24 h) and bromide levels (0 & 100 mu g/L), on the generation of the target DBPs was investigated. The highest aggregate DBP yields upon chlor(am)ination were reported for the aromatic and hydrophobic hydroxybenzamide; 2.7%+/- 0.1% M/M (chlorination) and 1.7% M/M (chloramination). Increased reactivity was observed in aliphatic and hydrophilic compounds, acrylamide (2.5 +/- 0.2% M/M) and acetamide (1.3 +/- 0.2% M/M), in chlorination and chloramination, respectively. The addition of bromide increased average DBP yields by 50-70%. Relative to chlorination, the application of chloramines reduced DBP formation by 66.5% (without Br-) and by 46.4% (with Br-). However, bromine incorporation in HAAs and HAcAms was enhanced following chloramination, of concern due to the higher toxicological potency of brominated compounds. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available