4.7 Article

Evaluation of fatty acid derivatives in the remediation of aged PAH-contaminated soil and microbial community and degradation gene response

Journal

CHEMOSPHERE
Volume 248, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.125983

Keywords

LEfSe; Microbial community; PAHs degraders; PAHs; Predicted function; Sodium aliphatates

Funding

  1. National Natural Science Foundation of China [U1662110, 41671325]
  2. Jiangsu Provincial Natural Science Foundation [BK20171521]

Ask authors/readers for more resources

In this study, derivatives of two common fatty acids in plant root exudates, sodium palmitate and sodium linoleate (sodium aliphatates), were added to an aged Polycyclic aromatic hydrocarbons (PAHs) contaminated soil to estimate their effectiveness in the removal of PAHs. Sodium linoleate was more effective in lowering PAHs and especially high-molecular-weight (4-6 ring) PAHs (HMW-PAHs). Principal coordinates analysis (PCoA) indicates that both amendments led to a shift in the soil bacterial community. Moreover, linear discriminant effect size (LEfSe) analysis demonstrates that the specific PAHs degraders Pseudomonas, Arenimonas, Pseudoxanthomonas and Lysobacter belonging to the gamma-proteobacteria and Nocardia and Rhodococcus belonging to the Actinobacteria were the biomarkers of, respectively, sodium linoleate and sodium palmitate amendments. Correlation analysis suggests that four biomarkers in the sodium linoleate amendment treatment from gamma-proteobacteria were all highly linearly negatively related to HMW-PAHs residues (p < 0.01) while two biomarkers in the sodium palmitate amendment treatment from Actinobacteria were highly linearly negatively related to LMW-PAHs residues (p < 0.01). Higher removal efficiency of PAHs (especially HMW-PAHs) in the sodium linoleate amendment treatment than in the sodium palmitate amendment treatment might be ascribed to the specific enrichment of microbes from the gamma-proteobacteria. The bacterial functional KEGG orthologs (KOs) assigned to PAHs metabolism and functional C23O and C12O genes related to cleavage of the benzene ring were both upregulated. These results provide new insight into the mechanisms of the two sodium aliphatate amendments in accelerating PAHs biodegradation and have implications for practical application in the remediation of PAHs-contaminated soils. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available