4.7 Article

Biodegradation of slop oil by endophytic Bacillus cereus EN18 coupled with lipase from Rhizomucor miehei (Palatase®)

Journal

CHEMOSPHERE
Volume 250, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.126203

Keywords

Slop oil; Petroleum waste; Biodegradation; Lipase; Rhizomucor miehei; Palatase (R)

Funding

  1. Institute of Molecular and Industrial Biotechnology, Lodz University of Technology
  2. MNISW, Poland

Ask authors/readers for more resources

Removal of slop oil, a by-product of oil refining, also obtained in cleaning up of oil tanks and filters is a difficult issue. High content of hydrocarbons (C3-C40) and other organic compounds makes this waste difficult to eliminate from the environment. The purpose of this investigation was to combine bacterial degradation by endophytic Bacillus cereus EN18 with biotransformation performed using lipase enzyme preparation (Palatase (R)) to remove recalcitrant compounds present in slop oil from the environment. Endophytic B. cereus EN18 was able to biodegrade up to 40% of slop oil while supplementation with lipase improved the efficiency of contamination removal in about one third. Also the use of lipase enzyme preparation resulted in higher microbial activity of B. cereus EN18 bacterial strain, as well as higher concentration of fatty acids in the culture medium, which indicates higher degradation efficiency. Obtained results suggest that lipase preparation from Rhizomucor miehei (Palatase (R)) may be a useful agent to improve microbial degradation of recalcitrant pollutants, like slop oil in water environments. GC and spectrometric analysis revealed that hydrocarbons from slop oil were effectively degraded while using both microbial degradation and lipase catalysis. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available