4.7 Article

One-pot synthesis of magnetic CuO/Fe2O3/CuFe2O4 nanocomposite to activate persulfate for levofloxacin removal: Investigation of efficiency, mechanism and degradation route

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 389, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.124456

Keywords

CuO/Fe2O3/CuFe2O4; Persulfate; Levofloxacin; Activation mechanism; Degradation route

Funding

  1. Natural Science Foundation of Hebei Province [B2019209373]
  2. National Natural Science Foundation of China [51504079]

Ask authors/readers for more resources

A cost-effective one-pot hydrothermal route was used to prepare novel magnetic CuO/Fe2O3/CuFe2O4 nanocomposites activating persulfate (PS) to remove levofloxacin from water. The optimized CuO/Fe2O3/CuFe2O4 sample (denoted as CuFeO-2) possessed a higher catalytic performance for levofloxacin degradation by activating PS than those of CuO, Fe2O3, CuFe2O4 and recently reported heterogeneous catalysts. After 120 min, the degradation efficiency and the mineralization degree of levofloxacin (10 mg.L-1) in CuFeO-2/PS system reached 75.5% and 64.5%, respectively. The influence of some significant reaction parameters (e.g., PS dosage, catalyst dosage, initial pH, temperature and coexisting inorganic anions) on levofloxacin removal in CuFeO-2/PS system was studied and analyzed. Although the catalytic activity of magnetic CuFeO-2 slightly declined after each cycle due to the loss of active Cu(II), the recyclability of CuFeO-2 was significantly better than that of CuO. The trapping experiments and ESA studies confirmed that singlet oxygen (O-1(2)), sulfate radical (SO4 center dot-) and hydroxyl radical (center dot OH) were generated in CuFeO-2/PS system, thus, the degradation of levofloxacin can be achieved via the non-radical and radical oxidation processes. The role of copper, iron and oxygen elements in CuFeO-2 on PS activation was investigated by ART-FTIR and XPS. The possible degradation routes of levofloxacin were put forward according to the detected intermediate products. Moreover, the performance of CuFeO-2/PS system for levofloxacin degradation in real water matrix was also investigated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available