4.7 Article

Damp-heat durability comparison of Al-doped ZnO transparent electrodes deposited at low temperatures on glass and PI-tape/PC substrates

Journal

CERAMICS INTERNATIONAL
Volume 46, Issue 10, Pages 16178-16184

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2020.03.173

Keywords

Al-doped ZnO; Low temperature; Durability; Damp-heat test

Ask authors/readers for more resources

Durability performances are compared for Al-doped ZnO (AZO) transparent electrodes deposited on hard slide-glass and flexible polyimide-tape attached to polycarbonate (PI-tape/PC) substrates. To identify the appropriate sputtering configuration, the AZO thin films are first deposited on the glass substrates via reactive RF-magnetron sputtering under 90 sccm of argon gas and 3 sccm of oxygen gas at room temperature (RT) with 83 to 90 W of RF power for 30 min. When deposited, only the sputtering configuration with 85 W of RF power could produce the AZO films with acceptable optoelectrical properties for transparent electrodes: 80% average visual transparency and 10 Omega/square at the thickness of 1.1 mu m. The temperature at the surface of the substrates rises from RT to 88 degrees C due to the sputtering with 85W of RF power for 30 min, and this configuration is successfully conducted for AZO film depositions on both the glass and PI-tape/PC substrates. After exposure to a damp-heat (DH) test at 85 degrees C and 85% relative humidity (RH) for 25 days, the conductivity of the AZO films on the PI-tape/PC substrates is significantly degraded: many cracks are visible on the films, significantly decreasing the Hall mobility. Conversely, the films deposited on the glass substrates exhibit durable high conductivity, no cracks, and excellent stability of the Hall mobility. Despite this significant difference in Hall mobility evolution, the films on both substrates show similar patterns of a slight decrease in carrier concentrations, suggesting that chemical characteristics, extensively reported as the key for the DH degradation of AZO films, are less involved in this durability study featuring AZO films prepared via a low oxygen-to-argon gas ratio of reactive sputtering at low temperatures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available