4.6 Article

A polycyclic aromatic hydrocarbon-enriched environmental chemical mixture enhances AhR, antiapoptotic signaling and a proliferative phenotype in breast cancer cells

Journal

CARCINOGENESIS
Volume 41, Issue 12, Pages 1648-1659

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/carcin/bgaa047

Keywords

-

Categories

Funding

  1. Duke Cancer Institute/DCI [P3917733, P30CA014236]
  2. DCI Cancer and Environment Program
  3. Department of Surgery Bolognesi award
  4. training grant National Institute for Environmental Health Sciences [T32-ES021432]
  5. National Cancer Institute training grant [T32CA009111]
  6. Gulf Coast Consortia on the Computational Cancer Biology Training Program (Cancer Prevention and Research Institute) [RP170593]
  7. Duke Trinity College of Arts and Sciences Undergraduate Research Support (URS) award

Ask authors/readers for more resources

Emerging evidence suggests the role of environmental chemicals, in particular endocrine-disrupting chemicals (EDCs), in progression of breast cancer and treatment resistance, which can impact survival outcomes. However, most research tends to focus on tumor etiology and the effect of single chemicals, offering little insight into the effects of realistic complex mixture exposures on tumor progression. Herein, we investigated the effect of a polycyclic aromatic hydrocarbon (PAH)enriched EDC mixture in a panel of normal and breast cancer cells and in a tumor organoid model. Cells or organoids in culture were treated with EDC mixture at doses estimated from US adult intake of the top four PAH compounds within the mixture from the National Health and Nutrition Examination Survey database. We demonstrate that low-dose PAH mixture (6, 30 and 300 nM) increased aryl hydrocarbon receptor (AhR) expression and CYP activity in estrogen receptor (ER) positive but not normal mammary or ER-negative breast cancer cells, and that upregulated AhR signaling corresponded with increased cell proliferation and expression of antiapoptotic and antioxidant proteins XIAP and SOD1. We employed a mathematical model to validate PAH-mediated increases in AhR and XIAP expression in the MCF-7 ER-positive cell line. Furthermore, the PAH mixture caused significant growth increases in ER-negative breast cancer cell derived 3D tumor organoids, providing further evidence for the role of a natural-derived PAH mixture in enhancing a tumor proliferative phenotype. Together, our integrated cell signaling, computational and phenotype analysis reveals the underlying mechanisms of EDC mixtures in breast cancer progression and survival.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available